Integrating dynamic economic optimization and model predictive control for optimal operation of nonlinear process systems
نویسندگان
چکیده
In this work, we propose a conceptual framework for integrating dynamic economic optimization and model predictive control (MPC) for optimal operation of nonlinear process systems. First, we introduce the proposed two-layer integrated framework. The upper layer, consisting of an economic MPC (EMPC) system that receives state feedback and time-dependent economic information, computes economically optimal time-varying operating trajectories for the process by optimizing a time-dependent economic cost function over a finite prediction horizon subject to a nonlinear dynamic process model. The lower feedback control layer may utilize conventional MPC schemes or even classical control to compute feedback control actions that force the process state to track the time-varying operating trajectories computed by the upper layer EMPC. Such a framework takes advantage of the EMPC ability to compute optimal process time-varying operating policies using a dynamic process model instead of a steady-state model, and the incorporation of suitable constraints on the EMPC allows calculating operating process state trajectories that can be tracked by the control layer. Second, we prove practical closed-loop stability including an explicit characterization of the closed-loop stability region. Finally, we demonstrate through extensive simulations using a chemical process model that the proposed framework can both (1) achieve stability and (2) lead to improved economic closed-loop performance compared to real-time optimization (RTO) systems using steady-state models. & 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
Performance Comparison of Predictive Controllers in Optimal and Stable Operation of Wastewater Treatment Plants
Any proper operation could be translated as a constrained optimization problem inside a WWTP, whose nonlinear behavior renders its control problems quite attractive for performance of multivariable optimization–based control technique algorithms, such as NMPC. The main advantage of this control technique lies in its ability to handle model nonlinearity as well as various types of constraints on...
متن کاملPerformance Comparison of Predictive Controllers in Optimal and Stable Operation of Wastewater Treatment Plants
Any proper operation could be translated as a constrained optimization problem inside a WWTP, whose nonlinear behavior renders its control problems quite attractive for performance of multivariable optimization–based control technique algorithms, such as NMPC. The main advantage of this control technique lies in its ability to handle model nonlinearity as well as various types of constraints on...
متن کاملاستراتژی کنترل پیش بین برای مدیریت توان در خودروی الکتریکی هیبرید موازی
In this paper, a hybrid model-based nonlinear optimal control method is used to compute the optimal power distribution and power management in parallel hybrid electric vehicles. In the power management strategy, for optimal power distribution between the internal combustion engine, electrical system and the other subsystems, nonlinear predictive control is applied. In achieving this goal, a hie...
متن کاملImproved Optimization Process for Nonlinear Model Predictive Control of PMSM
Model-based predictive control (MPC) is one of the most efficient techniques that is widely used in industrial applications. In such controllers, increasing the prediction horizon results in better selection of the optimal control signal sequence. On the other hand, increasing the prediction horizon increase the computational time of the optimization process which make it impossible to be imple...
متن کاملOptimal Control of Wastewater Treatment Plants Using Economic-Oriented Model Predictive Dynamic Strategies
This paper addresses the implementation of economic-oriented model predictive controllers for the dynamic real-time optimization of the operation of wastewater treatment plants (WWTP). Both the economic-optimizing controller (pure-EMPC) and the economic-oriented tracking controller (Hybrid-EMPC, or HEMPC) formulations are validated in the benchmark simulation model (BSM1) platform that represen...
متن کامل